SMT Boston Chapter

Massachusetts Lead Free Consortium Update 9/17/2003

Dr. Sammy Shina University of Massachusetts Lowell

Lead Free Drivers Environmental

- European Parliament and Council Directive on Waste Electrical and Electronic Equipment Directive (WEEE)
 - Bans lead from certain electronic applications by 2008
- Japan
 - Japanese Electronics Recycling Law 2001
 - Forbids companies toxic elements that leach into landfills 2/3rd reduction by 2004

Lead Free Project Plan Quality and Reliability Issues

- Lead Free Solder Joints are Visually different
 - Training of employees, field service and customers
 - Use existing Industry standards: IPC JSTD-001
- Reliability
 - Fatigue, creep and Impact
 - Shock and Vibration
 - Drop Test and Vibration Frequency
 - Simulate with temperature Cycling
 - Cycling Profile
 - Power on/Off
 - Humidity Cycling with Temperature

Introduction

- Lead is a toxic material: major replacements paint and gasoline
- Tin-Lead eutectic solder (60/40 or 63/37))
 - used in electronics industry for more than 50 years
 - large installed manufacturing base
 - history of reliability data
- US electronics industry uses less than 2% of annual lead consumption
- Current Consensus:

There is no drop-in Lead Free replacement for lead soldering

Project Plan - Material Selection and Manufacturing Processes

- Select the best recommended Material substitutes
 - PWB Surface Finishes
 - SMT Component Finishes
 - Lead Free Solders and Fluxing Materials
- Manufacturing Processes
 - Solder Reflow
 - Reflow Environment
 - Reflow Profiles
- Use existing Tin/Lead baseline for comparison

Test Vehicle: BTU/Multicore

- Passives • 1206 - Qty 24 • 0804 - Qty 18 • 0402 - Qty 21 IC/Semiconductor • LQFP120 - 0.0257 Pitch - Qty 1
- LQFP100 0.0157 Pitch Qty 1
- TQFP100 0.01977 Pitch Qty 1 • PLCC28 - Qty 1
- SO14 Qty 2
- SO16 Qty 2
- SOT23 Qty 4
- TSOP32 0.0197 Pitch Qty 1
- TQFP100 0.01977 Pitch Qty 1

Lead-Free Materials

Lead Free Solders Available

ALLOYS USED	MELTING RANGE (°C)	INDUSTRY SERVED	COMPANY
SnAg	221 - 226	Automotive	Visteon (Ford)
		Military/Aerospace	Panasonic
SnAgBi	206 - 213	Consumer	Hitachi
SnAgBiCu		Military/Aerospace	Panasonic (FA Controller?)
SnAgBiCuGe		Consumer	Sony
SnAgBiX	206 - 213	Consumer	Panasonic
SnAgCu		Automotive	Panasonic
-	217		Nokia
		1 [Nortel
		Telecommunications	Panasonic
			Toshiba
SnBi	138	Consumer	Panasonic
SnCu	227	Consumer	Panasonic
		Telecommunications	Nortel
	198.5		NEC
SnZn		Consumer	Panasonic
		I [Techike

(Source: IPC Roadmap 3rd draft.)

Lead-Free Surface Finishes

Potential Lead free finishes:
Organic Solder Protectants (OSP)
Lead-free Hot Air Solder Level (HASL)
Immersion Finishes
Electroless Nickle Immersion Gold (NiAu)

(Source: IPC Roadmap 3rd draft.)

Lead Free Immersion Surface finishes include Immersion Ag Immersion Sn

Lead-Free Process Windows

Lead-Free solders

Lead Free Solders Reviewed and/or Recommended by Other Organizations:

Organization	Alloys
	Sn0.7Cu
NEMI	Sn3.5Ag
	SnAgCu
	Sn3.5Ag
	Sn58Bi
	Sn3.0Ag2.0Bi
NCMS	CASTIN
	Sn3.4Ag4.8Bi
	Sn20In2.8Ag (Indalloy)
	Sn3.5Ag0.5Cu1.0Zn
	SnAgCu
	Sn2.5Ag0.8Cu0.5Sb
ITRI	Sn0.7Cu
	Sn3.5Ag
	SnBiAg
	SnBiZn

(Source: IPC Roadmap 3rd draft.)

Lead-Free Component Finishes

Lead Free Surface finishes for molded components:

Finish	Manufacturing Experience	Concerns
NiPd	Yes	Material cost (Process is cheaper; must switch 100%)
NiPdAu	Yes	Material cost
SnBi	No	The assembly must be totally Pb free.
Sn	Yes	Tin whiskers
SnCu	Yes	Tin whiskers

(Source: IPC Roadmap 3rd draft.)

Lead-Free Reflow Strategies

Project Team - Phase I

UMASS Lowell-Industry Lead Free Consortium

- Dr. Sammy Shina; Dept. of Mechanical Engineering, University of Massachusetts, Lowell.
- L. Harriman, C. Pace, Toxic Use Reduction Institute of Massachusetts (TURI)
- K. Walters, BTU International, North Billerica, MA.
- T. Bresnan, Hadco Corporation, Ward Hill, MA.
- T. Skidmore, Multicore Solders, Richardson, Texas.
- **D. Pinsky, Raytheon Corporation**, Lexington, MA.
- P. Provencal, Solectron Corporation, Westborough, MA.
- D. Abbot, Texas Instruments, Attleboro, MA.

Test Factors (source)

- Solder Alloys (Multicore solders)
 - Sn/Ag/Cu(95.5/3.8/0.7)
 - Sn/Ag (96.5/3.5)
 - Sn/Bi (57/43)
- PWB Surface Finishes (HADCO)
 - OSP(Organic Solder Protectants)
 - Electroless Nickel Immersion Gold (ENIG)
- Thermal Profiles (BTU)
 - Soak with 60sec, 90sec, 120sec above liquidus temp.
 - Linear with 60sec, 90sec, 120sec above liquidus temp.
- Reflow Environment (Solectron)

 Nitrogen vs. Air reflow.

Visual Inspection

Lead Free Defect Results

31.110.	rasie	O. FIIIISI	IAL	JUak	Nitrogen	DUalu La	IDei	FIOTHE NO.	Doaru Fau	its visuai	Total	Average
1	Sn/Ag/Cu	OSP	60sec	Yes	yes	1A	1B	1	797	944	1741	870.5
2	Sn/Ag/Cu	OSP	90sec	No	No	2A	2B	8	1213	1146	2359	1179.5
3	Sn/Ag/Cu	OSP	120sec	No	yes	3A	3B	6	874	890	1764	882
4	Sn/Ag/Cu	ENIG	60sec	No	No	4A	4B	7	544	594	1138	569
5	Sn/Ag/Cu	ENIG	90sec	No	yes	5A	5B	5	0	0	0	0
6	Sn/Ag/Cu	ENIG	120sec	Yes	yes	6A	6B	3	0	0	0	0
7	Sn/Ag/Cu	OSP	60sec	No	yes	7A	7B	4	828	819	1647	823.5
8	Sn/Ag/Cu	OSP	90sec	Yes	yes	8A	8B	2	902	960	1862	931
9	Sn/Ag/Cu	OSP	120	No	No	9A	9B	9	1182	1164	2346	1173
10	Sn/Bi	OSP	60sec	No	yes	10A	10B	13	1134	963	2097	1048.5
11	Sn/Bi	OSP	90sec	No	yes	11A	11B	14	875	1136	2011	1005.5
12	Sn/Bi	OSP	120sec	Yes	No	12A	12B	12	967	1146	2113	1056.5
13	Sn/Bi	ENIG	60sec	No	yes	13A	13B	13	1024	960	1984	992
14	Sn/Bi	ENIG	90sec	Yes	No	14A	14B	11	1016	1002	2018	1009
15	Sn/Bi	ENIG	120sec	No	yes	15A	15B	15	843	560	1403	701.5
16	Sn/Bi	OSP	60sec	Yes	No	16A	16B	10	1148	1067	2215	1107.5
17	Sn/Bi	OSP	90sec	No	yes	17A	17B	14	781	606	1387	693.5
18	Sn/Bi	OSP	120sec	No	yes	18A	18B	15	765	882	1647	823.5
19	Sn/Ag	OSP	60sec	No	No	19A	19B	7	1212	1279	2491	1245.5
20	Sn/Ag	OSP	90sec	Yes	yes	20A	20B	2	1131	988	2119	1059.5
21	Sn/Ag	OSP	120sec	No	yes	21A	21B	6	1027	933	1960	980
22	Sn/Ag	ENIG	60sec	Yes	yes	22A	22B	1	0	0	0	0
23	Sn/Ag	ENIG	90sec	No	yes	23A	23B	5	0	0	0	0
24	Sn/Ag	ENIG	120sec	No	No	24A	24B	9	180	240	420	210
25	Sn/Ag	OSP	60sec	No	yes	25A	25B	4	796	829	1625	812.5
26	Sn/Ag	OSP	90sec	No	No	26A	26B	8	1205	1146	2351	1175.5
27	Sn/Ag	OSP	120sec	Yes	yes	27A	27B	3	868	935	1803	901.5
21	ShivAg	USP	120560	res	yes	2/A	2/8	3	808	935	1803	901.5

Pull Test on Ni/Pd SO14

Methodology: Accessing the lead

Visual Inspection conclusions

- Metallurgy of Solder paste alloy and surface finish is the most critical factor in producing good solder joints.
- Surface finish is the biggest contributor (52%).
- Reflow environment improves the quality of solder joints with nitrogen having 10% statistical contribution.
- Time above liquidus is significant.
- No major difference noted between soak and linear. Utilizing linear profile will minimize thermal shock and cost of ownership.
- None of the boards exhibited thermal damage to the FR4 laminate material.
- Optimal settings:
 - Sn/Ag or Sn/Ag/Cu
 - ENIG performs the best with these alloys.
 - Nitrogen Reflow Environment.

Pull Test on Ni/Pd SO14

Baste S. Finish TAL Soak N2 Board Label Force (Ibs) Force (N) Average Sn/Ag/Cu OSP 60sec Yes yes 1A 1B 7.968 8.2.3 36.468 36.49 36.973 Sn/Ag/Cu OSP 60sec Yes yes 1A 1B 7.968 8.2.3 36.468 36.49 36.973 Sn/Ag/Cu OSP 90sec No No A 2B 7.796 93.4.682 40.05 37.3711 Sn/Ag/Cu OSP 120sec No Yes SA 3B 8.386 9.325 37.318 41.496 39.40697 Sn/Ag/Cu ENIG 90sec No No 4A 4B 7.731 5.768122 Sn/Ag/Cu OSP 90sec No yes 5A 6B 7.937 7.152 35.409 31.827 35.01752 Sn/Ag/Cu OSP 90sec Yes YA TA TB

Pull Test on Ni/Pd SO14 Conclusion

- Solder Paste is the most significant factor (42.7%)
- Surface finish (7.3%) and Soak are significant (3.1%).
- OSP provided the highest pull strength.
- Time above liquidus insignificant therefore minimized time above liquidus will increase throughput.
- Reflow environment does not have any contribution in improving strength of the joint
- Optimal settings:
 - Sn/Ag/Cu
 - OSP
 - No Soak

Overall Conclusion prior to Thermal Cycling

- Metallurgy of Solder Paste and PWBs surface finish are the most important factors
- A visually good looking joint may not be the best in terms of strength.
- Nitrogen as a reflow environment improves wetting
- Thermal Profile is significant and altering Time above liquidus improves quality of solder joints
- Higher oven temperature settings may reduce the overall throughput due to low belt speed
- Implementing Lead Free may induce overheads
- · No immediate availability of all components as lead free
- Lead free soldering is possible

Pull Test on Ni/Pd SO14

Lead-Free Results after Thermal Cycling

	Paste	S. Finish	TAL	Soak	N2	Board	Label	Force	(lbs)	Force	(N)	Average
1	Sn/Ag/Cu	OSP	60sec	Yes	yes	1A	1B	9.686	10.59	43.103	47.126	45.1141
2	Sn/Ag/Cu	OSP	90sec	No	No	2A	2B	10.65	10.18	47.393	45.301	46.34675
3	Sn/Ag/Cu	OSP	120sec	No	yes	3A	3B	10.46	10.18	46.547	45.301	45.924
4	Sn/Ag/Cu	ENIG	60sec	No	No	4A	4B	10.32	9.89	45.924	44.011	44.96725
5	Sn/Ag/Cu	ENIG	90sec	No	yes	5A	5B	10.54	7.388	46.903	32.877	39.8898
6	Sn/Ag/Cu	ENIG	120sec	Yes	yes	6A	6B	7.989	8.462	35.551	37.656	36.603475
7	Sn/Ag/Cu	OSP	60sec	No	yes	7A	7B	10.99	8.548	48.906	38.039	43.47205
8	Sn/Ag/Cu	OSP	90sec	Yes	yes	8A	8B	9.052	10.48	40.281	46.636	43.4587
9	Sn/Ag/Cu	OSP	120	No	No	9A	9B	8.913	9.342	39.663	41.572	40.617375
10	Sn/Bi	OSP	60sec	No	yes	10A	10B	7.925	6.174	35.266	27.474	31.370275
11	Sn/Bi	OSP	90sec	No	yes	11A	11B	8.837	6.722	39.325	29.913	34.618775
12	Sn/Bi	OSP	120sec	Yes	No	12A	12B	5.766	3.705	25.659	16.487	21.072975
13	Sn/Bi	ENIG	60sec	No	yes	13A	13B	5.412	9.632	24.083	42.862	33.4729
14	Sn/Bi	ENIG	90sec	Yes	No	14A	14B	3.297	8.623	14.672	38.372	26.522
15	Sn/Bi	ENIG	120sec	No	yes	15A	15B	8.827	3.436	39.28	15.29	27.285175
16	Sn/Bi	OSP	60sec	Yes	No	16A	16B	5.133	5.756	22.842	25.614	24.228025
17	Sn/Bi	OSP	90sec	No	yes	17A	17B	4.897	8.354	21.792	37.175	29.483475
18	Sn/Bi	OSP	120sec	No	yes	18A	18B	6.776	8.569	30.153	38.132	34.142628
19	Sn/Ag	OSP	60sec	No	No	19A	19B	9.632	8.719	42.862	38.8	40.830975
20	Sn/Ag	OSP	90sec	Yes	yes	20A	20B	10.12	10.19	45.034	45.346	45.18975
21	Sn/Ag	OSP	120sec	No	yes	21A	21B	9.492	9.31	42.239	41.43	41.83445
22	Sn/Ag	ENIG	60sec	Yes	yes	22A	22B	9.697	9.815	43.152	43.677	43.4142
23	Sn/Ag	ENIG	90sec	No	yes	23A	23B	9.224	8.709	41.047	38.755	39.900925
24	Sn/Ag	ENIG	120sec	No	No	24A	24B	9.707	6.142	43.196	27.332	35.264025
25	Sn/Ag	OSP	60sec	No	yes	25A	25B	9.031	10.08	40.188	44.856	42.521975
26	Sn/Ag	OSP	90sec	No	No	26A	26B	8.666	6.883	38.564	30.629	34.59652
27	Sn/Ag	OSP	120sec	Yes	yes	27A	27B	8.483	7.935	37.749	35.311	36.53005
	~						^					~

actors	Por	Parkantcontributiontowards the variation of									
actors	ren	centcontribu		variation		r	ercen				

Reliability Test Theoretical Thermal Cycling

Visual + Pull

Conclusions

Recommendations/Further Work Phase I

- Reliability testing has to be continued till any failure is noticed
- Inter-metallic growth have to be investigated
- More investigation and beta testing may be required
- Visual Standards need to be compatible with lead-free
- Need of a standardized test vehicle
- Pull test methodology has to be standardized

Project Team - Phase II

UMASS Lowell-Industry Lead Free Consortium

Additions of More companies

- TURI, Todd McFadden
- Tyco Electronics, MA/COM, Lowell MA George Wilkish, Quality; Richard Anderson, Engineering and Helena Pasquito, Inpsection
- Schneider Electric; Andover, MA, Mark Quealy
- Analog Devices, Wilmington, MA, Richard McCann and Alan Grust
- Air Products and Chemicals, Inc, Marie Kistler
- 3 Solder Suppliers

Lead-Free Solder Recommendations

- **NEMI Task Force 2/2001**
 - Sn3.9Ag0.6Cu for surface mount
 - Sn0.7Cu(first priority) and Sn3.5Ag (second priority) for wave soldering
 - •(The compositions are in weight %; for example, Sn3.9Ag0.6Cu is 3.9%Ag, 0.6%Cu, balance Sn.)

NEMI Roadmaps

- **Low Cost Computer**
- **Hand Held Cell Phone**
- **Harsh Environment Autos**
- **Hi-Performance Communications**

Test Vehicle: (Lead free components)

Phase II: Lead Free Material Solder Supplier Selection

- 1. **PWB Finishes** Five Treatments– Solder Mask Over Bare Copper with Hot Air Solder Leveling (SMOBC/HASL), Matte Finish Tin (Sn) Electroplate, Immersion Silver (Ag), Organic Solder Preservative (OSP), and Electroless Nickel Immersion Gold (ENIG).
- Reflow Atmospheres Two Treatments Air and Nitrogen. Nitrogen was supplied by Air Products and Chemicals and contained 50 ppm Oxygen for these experiments
- 3. **Solder Pastes** Three Treatments all with the same alloy composition 95.5Sn-3.8 Ag-0.7Cu (NEMI recommended) from three different suppliers (A, B and C), all incorporating no-clean fluxes.
- 4. **Component Lead Finishes** Four Treatments matte Tin plating, Tin/Silver/Copper, Nickel/Palladium/Gold, and Nickel/Gold.

Sn-Pb eutectic solder PWB using the solder treatments as control PWBs.

Visual Inspection

Lead Free Defect Results

QFF-SMOBC PWB FinishX (C solder, pb free) X (B solder, leaded) Pull tests Multiple Range Tests

Multiple Range tests – Homogenous GroupsCor

Pull test Conclusions - 1

The selection of materials and process affects the pull strength of the solder joints for the QFP and SOIC components tested, using components with Nickel/Palladium/Gold finish:

•.The pull forces are dependant on the footprint of the components used Thus pull forces in the SOIC were significantly higher that QFP. •.The PWB surface finish has a significant effect on the pull test of the leads. Of the five PWB finishes (SMOBC, OSP, ENIG, Matted SN and Imm AG), ENIG was significantly lower than the other finishes in both IC's pulled. OSP was significantly higher in QFP and SMOBC/HASL was significantly higher in SOIC.

• The solder suppliers were not important in the pull tests for the two IC types. Supplier B was slightly higher in QFP and significantly higher in SOIC 20.

•.Nitrogen was significantly higher than air reflow for QFP,

• Nitrogen not significant for SOIC.

Pull test Conclusions - 2

Comparison of unleaded solder pulls to leaded solder pulls in QFP and SOIC, using components with Nickel/Palladium/Gold finish.

• This comparison was difficult since the baseline leaded PWBs were made with a single process: that of being soldered in air with leaded solder from supplier B, and the silver surface finish baseline was not available. The data indicated that the difference is not significant in most cases when using the same solder supplier (B) for unleaded and leaded solders.

Pull test Conclusions - 3

Interchangeability of leaded and unleaded components and solders in SOIC and tin plated components pull tests.

This is an important issue for electronic component suppliers and customers, concerned about keeping a dual set of materials for different markets around the world as the technology transitions from leaded to lead free soldering. The data indicates that for the set of 7 conditions analyzed in Table 6, with 21 pair-wise tests, there is no significant difference in the pull test results. Note that the baseline condition of leaded solders and component-finishes, and the ultimate condition of lead free solders and component-finishes were not tested.

